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Abstract—funcX is a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote

function execution. Unlike centralized FaaS systems, funcX decouples the cloud-hostedmanagement functionality from the edge-hosted

execution functionality. funcX’s endpoint software can be deployed, by users or administrators, on arbitrary laptops, clouds, clusters, and

supercomputers, in effect turning them into function serving systems. funcX’s cloud-hosted service provides a single location for

registering, sharing, andmanaging both functions and endpoints. It allows for transparent, secure, and reliable function execution across

the federated ecosystem of endpoints—enabling users to route functions to endpoints based on specific needs. funcX uses containers

(e.g., Docker, Singularity, and Shifter) to provide common execution environments across endpoints. funcX implements various container

management strategies to execute functionswith high performance and efficiency on diverse funcX endpoints. funcX also integrateswith

an in-memory data store andGlobus for managing data that may span endpoints.Wemotivate the need for funcX, present our prototype

design and implementation, and demonstrate, via experiments on two supercomputers, that funcX can scale tomore than 130000

concurrent workers.We show that funcX’s container warming-aware routing algorithm can reduce the completion time for 3,000 functions

by up to 61% compared to a randomized algorithm and the in-memory data store can speed up data transfers by up to 3x compared to a

shared file system.

Index Terms—Function-as-a-service, cyberinfrastructure, distributed computing
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1 INTRODUCTION

THE exponential growth of data and increasing hardware
diversity is driving the need for computation to occur

wherever it makes the most sense, for example, on a suitable
computer, where particular software is available, or near data.
Prior research, in grid [39] and peer-to-peer [60] computing,

has studied and explored the foundations for remote comput-
ing. However, with the exception of cloud platforms, general-
purpose remote computation has remained elusive due to, for
example, slow and unreliable network communications, secu-
rity challenges, and dependencies between software and het-
erogeneous computer architectures.

Commercial cloud providers have been at the forefront of
recent advances in networks, hardware, and distributed
computing, leveraging widespread virtualization, universal
trust fabrics, and high-speed networks to deliver serverless
computing services such as function-as-a-service (FaaS) [27],
[40], [77]. FaaS enables developers to register a high-level
programming function and to then invoke that function
many times by passing input arguments. The user needs not
concern themselves with provisioning infrastructure or con-
figuring execution environments. FaaS systems have quickly
become integral to a wide range of applications, particularly
for event-based and dev-ops applications.

The FaaS model is particularly attractive in science as a
way of decomposing monolithic science applications into a
collection of modular, performant, and extensible func-
tions [38], [41], [48], [58], [72]. However, existing FaaS sys-
tems are typically centralized and specific to a particular
cloud, rather than being designed to be deployed on hetero-
geneous research cyberinfrastructure (CI) or to use federated
resources. Typically research CI uses batch scheduling inter-
faces and inflexible authentication and authorization mod-
els, which does not lend itself to the fine-grain and sporadic
function workloads. In response, we propose a federated
FaaS model for general-purpose remote computing at scale
across diverse CIs, both centrally and at the edge.
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In this paper, we present funcX, a federated, scalable,
and high-performance function execution platform. funcX
leverages a distributed endpoint model to support remote
function execution across distributed and heterogeneous
research CI. Users can transform many computing resour-
ces, such as laptops, clouds, clusters, supercomputers, or
Raspberry Pis they are authorized to access, into function
serving systems by deploying funcX’s endpoint software.
Users then use the cloud-hosted funcX service to register
Python functions and invoke those functions on their
deployed endpoints. funcX manages the reliable and secure
execution of functions, staging function code and inputs,
provisioning resources, managing safe and secure execution
(optionally in containers), monitoring execution, and
returning outputs to users. Thus, users benefit from the con-
venience and reliability of a cloud-hosted service combined
with the flexibility and performance of a federated ecosys-
tem of endpoints.

We extend our previous work [32] to support complex
data dependencies between scientific functions. Specifically,
we focus on enabling data transfer between functions that
are executing on the same (intra-endpoint) or different (inter-
endpoint) endpoints. For intra-endpoint communication we
use an in-memory data store, for inter-endpoint communi-
cation we use Globus [37]. We also present new heuristic-
based container management and function routing schemes
that reduce container warming overhead and efficiently
route functions to appropriately configured containers.

The primary novelty of our work is in the adaptation of
the FaaS paradigm to a federated research ecosystem, com-
bining a distributed endpoint model with a hosted FaaS
platform to support remote function execution across dis-
tributed and heterogeneous research CI. We demonstrate
the viability of our approach with a highly modularized
and extensible design as well as a scalable and performant
implementation. We also show that it is beneficial to decom-
pose scientific applications into monolithic functions that
may be executed on different remote resources. The contri-
butions of our work are as follows:

� funcX, a distributed and federated FaaS platform
that can: be deployed on research CI, dynamically
provision and manage resources, leverage various
container technologies, and facilitate secure, scalable,
and distributed function execution.

� Automated data movement between functions using
widely-used in-memory data stores and high-perfor-
mance data transfer technology to transparently sup-
port data dependencies between functions.

� Design and evaluation of performance enhance-
ments for function serving on distributed research
CI, including function warming, batching, and func-
tion routing.

� Experimental studies showing that funcX delivers
execution latencies comparable to those of commer-
cial FaaS platforms and scales to 1M+ functions
across 130 K active workers on supercomputers.

The rest of this paper is as follows. Section 2 describes an
example use case and presents general requirements for
FaaS in science. Section 3 presents a conceptual model of
funcX. Section 4 describes the funcX system architecture.

Section 5 discusses how data is managed in funcX. Section 6
presents funcX’s container management model. Section 7
evaluates funcX performance. Section 8 reviews funcX’s
use in scientific case studies. Section 9 discusses related
work. Finally, Section 10 concludes this paper.

2 MOTIVATIONS AND REQUIREMENTS

Over the last two years the scientific community has been
working to understand SARS-CoV-2 and develop effective
tests, therapeutics, and vaccines. However, progress in these
areas is dependent on our ability to understand SARS-CoV-2
protein structures. At Argonne’s Advanced Photon Source
[49], scientists use an emerging method called fixed-target
serial synchrotron crystallography (SSX) to collect physiologi-
cal temperature data from thousands of protein crystals.

Listing 1. Three Functions Used in the SSX Pipeline and
an Example of How the funcX SDK is Used to Register
and Invoke the process_stills Function

Data are generated at unprecedented rates with tens of
thousands of images captured each hour. Keeping pace
with the experiment requires rapid data processing across
multiple, heterogeneous computing resources to efficiently
analyze, refine, solve, and curate structures.

To meet these data processing and publication needs,
SSX scientists have adopted an automated data manage-
ment framework [81] that can manage data acquisition,
analysis, curation, and visualization. Throughout this work-
flow, there are needs for computation both at the edge to
detect and pre-process data rapidly, as well as on HPC
resources to perform computationally expensive analysis
tasks and produce structures. Each of these steps relies on dif-
ferent packages and functions, has different processing durations,
occurs at different times, and requires different types and amounts
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of computing resources. Thus, it is essential that the scientists be
able to decompose the entire processing pipeline into a series of
individual functions to perform on data as they are moved and
transformed. These functions, shown in Listing 1, analyze
individual images, refine and solve the crystal structure,
and extract metadata and create plots before publishing
results.

This typical science use case, with parallels in many other
domains described in our previous work [32], highlights the
benefits of FaaS approaches (e.g., decomposition, abstrac-
tion, flexibility, scalability, reliability), and also elucidates
several requirements for FaaS approaches.

� Research CI: functions may require HPC-scale and/or
specialized and heterogeneous resources. Many
resources expose batch scheduler interfaces (with
long delays, periodic downtimes, proprietary inter-
faces) and specialized container technology (e.g., Sin-
gularity, Shifter) that make it challenging to provide
common execution interfaces, on-demand and elastic
capacity, and fault tolerance.

� Distribution: different parts of an application may be
most efficiently executed on different, often distrib-
uted, resources (e.g., near data, on a specialized
computer).

� Data: functions analyze both small and large data,
stored in various locations and formats, and accessi-
ble via different methods (e.g., Globus [31]).

� Authentication: institutional identities and specialized
security models are used to access data, compute
resources, and other cyberinfrastructure.

� State: functionsmay be connected and share state (e.g.,
files or database connections) to decrease overheads.

Existing FaaS solutions may satisfy these requirements
partially, but not completely. For example, some FaaS sys-
tems (e.g., OpenWhisk [4], KNIX [14]) support on-premise
deployments on specialized hardware (e.g, GPU), but not
on distributed and federated computing resources. Some
FaaS systems (e.g., DFaaS [34], ChainFaaS [42]) support
function execution in distributed environments, but not on
research CI. Here we present funcX, a federated and scal-
able FaaS platform that enables researchers to decompose
applications into functions and execute them on arbitrary
remote computers via the FaaS paradigm.

3 CONCEPTUAL MODEL

We first describe the conceptual model behind funcX to pro-
vide context to the implementation architecture. funcX allows
users to register and then execute functions on arbitrary end-
points. All user interactions with funcX are performed via a
RESTAPI implemented by a cloud-hosted funcX service.

Functions: funcX is designed to execute functions: snip-
pets of Python code that perform some activity. A funcX
function explicitly defines a Python function and input
signature. The function body must specify all imported
modules. While funcX supports only Python functions,
users can easily write Python functions to invoke tools
written in other languages. Listing 1 shows several func-
tions used in the SSX pipeline mentioned in Section 2.
The process_stills function takes a single input

dictionary as input, which includes the locations of the
images and the phil file describing the analysis configura-
tion. The function then makes use of the DIALS [82] tool
to analyze the image.

Function Registration. A function must be registered with
funcX before it can be executed. The registration includes a
name and the serialized function body. Optionally, it may
also specify users, or groups of users, who may be autho-
rized to invoke the function, and a container image to be
used for execution. Containers allow the construction of
environments with the dependencies (system packages
and Python libraries) required to execute the function.
funcX assigns a universally unique identifier (UUID) for
management and invocation. Users may update functions
they own.

Endpoints. A funcX endpoint is a logical entity that repre-
sents a compute resource. The corresponding funcX agent
allows the funcX service to dispatch functions to that
resource for execution. The agent handles authentication
and authorization, provisioning of nodes on the compute
resource, and monitoring and management. Administrators
or users can deploy a funcX agent and register an endpoint
for themselves and others, providing descriptive (e.g.,
name, description) metadata. Each endpoint is assigned a
UUID for subsequent use.

Function Execution. Authorized users may invoke a regis-
tered function on a selected endpoint. To do so, they issue a
request via funcX that identifies the function and endpoint
to be used as well as inputs to be passed to the function.
Functions are executed asynchronously: each invocation
returns an identifier via which progress may be monitored
and results retrieved. In this paper, we refer to an invocation of
a function as a “task.” Importantly, following the FaaS model,
while users must specify the specific endpoint for use, they
do not manage the resources on which the function is exe-
cuted (e.g., nodes, containers, or modules)

f uncX Service. Users interact with funcX via a cloud-
hosted service that exposes a REST API for registering func-
tions and endpoints, and for executing functions, monitor-
ing their execution, and retrieving results. The REST API
provides a uniform interface via which users can make
asynchronous and stateless calls to manage endpoints and
function executions. REST APIs are the the most common
interface for FaaS platforms (e.g., AWS Lambda [1] and
Google Cloud Functions [11]). The service is connected to
accessible endpoints via the endpoint registration process.

User Interface. funcX provides a Python SDK that wraps
the REST API. Listing 1 shows an example of how the SDK
can be used to register and invoke a function on a specific
endpoint. The example first constructs a client and registers
the process_stills function. It then invokes the regis-
tered function using the run command, passing the unique
function identifier, the endpoint id on which to execute the
function, and inputs (in this case data). Finally, the exam-
ple shows that the results can be asynchronously retrieved
using get_result.

4 ARCHITECTURE AND IMPLEMENTATION

funcX combines a cloud-hosted management service with
software agents deployed on remote resources: see Fig. 1.
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4.1 The funcX Service

The funcX service maintains a registry of funcX endpoints,
functions, and users in a persistent AWS Relational Data-
base Service (RDS) database. To facilitate rapid function dis-
patch, funcX stores serialized function codes and tasks
(including inputs and task metadata) in an AWS ElastiC-
ache Redis hashset. The service also manages a Redis queue
for each endpoint that stores task IDs for tasks to be dis-
patched to that endpoint. The service exposes a REST API
to register and manage endpoints, register functions, exe-
cute and monitor functions, and retrieve the output from
tasks. The funcX service is secured using Globus Auth [75],
which allows users, programs and applications, and funcX
endpoints to securely make API calls. When an endpoint
registers with the funcX service, a unique forwarder process
is created for each endpoint. Endpoints establish secured
ZeroMQ connections with their forwarder to receive tasks,
return results, and perform heartbeats.

funcX implements a hierarchical task queuing architec-
ture consisting of queues at the funcX service, endpoint,
and worker. These queues support reliable fire-and-forget
function execution that is resilient to failure and intermit-
tent endpoint connectivity. At the first level, each regis-
tered endpoint is allocated a unique Redis task queue and
result queue to store and track tasks, which are imple-
mented using Redis Lists structure. We use Redis as it
provides a simple yet performant system for brokering
tasks. Redis is offered as a hosted Amazon service and can
be elastically scaled as workload increases. funcX serves
primarily as a broker to manage and distribute tasks. Redis
provides high throughput queuing via an in-memory store
with little overhead on the tasks and results passed
through the queue—an important requirement for provid-
ing low latency execution. One limitation of this approach
is that we must implement message acknowledgments to
ensure that tasks and results are communicated reliably
between clients, endpoints, and the funcX service. We
note that as use cases expand, we may need to consider
other message queues, such as Kafka [3], Pulsar [5], or
AMQP-based systems (e.g., RabbitMQ [20]).

Fig. 2 shows the funcX task lifecycle. At function submis-
sion, the funcX service routes the task to the specified
endpoint’s task queue. The forwarder listens to the queue
for tasks and then dispatches the task to the corresponding
agent. funcX agents internally queue tasks at both the man-
ager and worker. These queues ensure that tasks are not
lost once they have been delivered to the endpoint. Results
are returned to the funcX service and stored in the
endpoint’s result queue until they are retrieved by the user.

funcX relies on AWS-hosted databases, caches, and Web
serving infrastructure to reduce operational overhead, elas-
tically scale resources, and provide high availability. While
these services provide significant benefits to funcX, they
have associated costs. To minimize these costs we apply
several techniques, such as using small cloud instances with
responsive scaling to minimize the steady state cost and
restricting the size of input and output data passed through
the funcX service to reduce storage (e.g., in Redis store) and
data egress costs. Further, we periodically purge results
from the Redis store once they have been retrieved by the
client or after a period of time.

The funcX service is designed to provide robustness and
fault tolerance using several techniques. First, the funcX ser-
vice implements health checks, including a liveness check,
CPU utilization, and response time monitoring, etc. The ser-
vice is automatically restarted when these health checks
indicate failures. Second, the RDS database and Redis task
queue are replicated to ensure that any data (e.g., users,
functions, endpoints, and tasks) are not lost. Third, the for-
warder uses configurable periodic heartbeats (30 seconds
by default) to detect if an agent is disconnected. A task is
sent to an agent only when it is connected. When an agent is
disconnected, all the tasks dispatched to the agent are
returned back into the task queue and the tasks are for-
warded to that agent when it reconnects. Fourth, tasks are
cached at each layer and only removed when downstream
layers have acknowledged receipt. Finally, to serve the dis-
tributed endpoints in funcX, the funcX service is deployed
on cloud-hosted services, which internally provide high
reliability and robustness.

4.2 Function Containers

funcX uses containers to package function code and depen-
dencies that are to be deployed on a compute resource. Our
review of container technologies, including Docker [59],

Fig. 1. funcX architecture, showing the funcX service (top) consisting of
a REST interface, Redis store, and Forwarders. funcX endpoints (bot-
tom) provision resources and coordinate the execution of functions.

Fig. 2. funcX task execution path. A task submitted to funcX (1) is
stored in Redis (2), queued for execution (3), and dispatched via a For-
warder to an endpoint (4); results are returned (5), then stored in Redis
for users to retrieve (6).
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LXC [17], Singularity [54], Shifter [46], and Charlie-
Cloud [63], led us to adopt Docker, Singularity, and Shifter.
Docker works well for local and cloud deployments,
whereas Singularity and Shifter are designed for use in
HPC environments and are supported at large-scale com-
puting facilities (e.g., Singularity at ALCF and Shifter at
NERSC). Singularity and Shifter implement similar models
and thus it is easy to convert from a common representation
(e.g., a Dockerfile) to both formats.

funcX requires that each container includes a base set of
software, including Python 3 and funcX worker software.
Other system libraries or Python modules needed for func-
tion execution must also be included. When registering a
function, users may optionally specify a container to be
used for execution; if no container is specified, funcX exe-
cutes functions using the worker’s Python environment. In
future work, we intend to make this process dynamic, using
repo2docker [36] to build Docker images and convert them
to site-specific container formats as needed.

4.3 The funcX Endpoint

The funcX endpoint represents a remote resource and deliv-
ers high-performance remote execution of functions in a
secure, scalable, and reliable manner.

The endpoint architecture, depicted in the lower portion
of Fig. 1, is comprised of three components, which are dis-
cussed below:

� funcX agent: a persistent process that queues and
forwards tasks and results, interacts with resource
schedulers, and load balances tasks.

� Manager:manages the resources for a single compute
node on an endpoint by deploying and managing a
set of workers.

� Worker: executes tasks (optionally within a container).
The funcX agent is a software agent that is deployed by a

user on a compute resource (e.g., an HPC login node, cloud
instance, or a laptop). It registers with the funcX service and
acts as a conduit for routing tasks and results between the
service and workers. The funcX agent manages resources
on its system by working with the local scheduler or cloud
API to deploy managers on compute nodes. The funcX agent
uses a pilot job model [76] to provision and communicate
with resources in a uniform manner, irrespective of the
resource type (cloud or cluster) or local resource manager
(e.g., Slurm, PBS, Cobalt). As each manager is launched on a
compute node, it connects to and registers with the funcX
agent. The funcX agent then uses ZeroMQ sockets to com-
municate with its managers. To minimize blocking, all com-
munication is performed by threads using asynchronous
communication patterns. The funcX agent uses a random-
ized scheduling algorithm to allocate tasks to suitable man-
agers with available capacity. The funcX agent can be
configured to provide access to specialized hardware or
accelerators. When deploying the agent, users can specify
how worker containers should be launched, enabling them
to mount specialized hardware and execute functions on
that hardware. In future work, we will extend the agent con-
figuration to specify custom hardware and software capa-
bilities and report this information to the funcX agent and
service for scheduling.

To provide fault tolerance and robustness, for example
with respect to node failures, the funcX agent relies on peri-
odic heartbeat messages and a process to detect lost manag-
ers. The funcX agent tracks tasks that have been distributed
to managers so that when failures do occur, lost tasks can
be re-executed (if permitted). funcX agents communicate
with the funcX service’s forwarder via a ZeroMQ channel.
Loss of a funcX agent is detected by the forwarder and
when the funcX agent recovers, it repeats the registration
process to acquire a new forwarder and continue receiving
tasks. To reduce overheads, the funcX agent can shut down
managers to release resources when they are not needed,
suspend managers to prevent further tasks from being
scheduled to them, and monitor resource capacity to aid
scaling decisions.

Managers represent, and communicate on behalf of, the
collective capacity of the workers on a single node, using just
two sockets per node. Managers determine the available
CPU and memory resources on a node, and partition the
node among the workers. Managers advertise deployed
container types and available capacity to the endpoint.

Workers persist on a node (optionally within containers)
and each executes one task at a time. Since workers have a
single responsibility, they use blocking communication to
wait for tasks from the manager. Once a task is received, it
is deserialized, executed, and the serialized results are
returned via the manager.

4.4 Managing Compute Infrastructure

funcX is designed to support a range of computational
resources, from embedded computers to clusters, clouds,
and supercomputers, each with distinct access modes. As
funcX workloads are often sporadic, resources must be pro-
visioned and deprovisioned as needed to reduce costs due to
idle resources. funcX uses Parsl’s provider interface [26] to
interact with various resources, specify resource-specific
requirements (e.g., allocations, queues, limits, cloud instance
types), and define rules for automatic scaling (i.e., limits and
scaling aggressiveness). This interface allows funcX to be
deployed on batch schedulers such as Slurm, PBS, Cobalt,
SGE, and Condor; major cloud systems such as AWS, Azure,
andGoogle Cloud; and Kubernetes.

4.5 Serialization

funcX supports the registration of arbitrary Python func-
tions and the passing of data (e.g., primitive types and com-
plex objects) to/from those functions. funcX uses a Facade
interface with several serialization libraries (including
pickle, dill, and JSON) as some Python object types cannot be
serialized with some serialization libraries, and no single
serialization library can serialize all objects. The funcX serial-
izer sorts the serialization libraries by speed and applies
them in order successively until the object is successfully
serialized. This approach combines the strengths of various
libraries, including support for complex objects (e.g.,
machine learning models) and traceback objects in a fast and
transparent fashion. Once objects are serialized, they are
packed into buffers with headers that include routing tags
and the serialization method, such that only the buffers need
to be unpacked and deserialized at the destination.
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4.6 Batching

funcX supports two batching to amortize costs across many
function requests: internal batching enables managers to
request many tasks on behalf of their workers, minimizing
network communication costs; and, user-facing batching
that enables users to define batches of function inputs,
allowing users to trade off efficient execution and increased
per-function latency by creating fewer, larger requests. The
SDK includes a matching batch interface for retrieving the
results of many tasks concurrently.

4.7 Security Model

funcX requires a security model to ensure that functions are
executed on endpoints by authenticated and authorized
users and that one function cannot interfere with another.

Authentication and Authorization. Since funcX endpoints
may be deployed across arbitrary resources, we first sum-
marize authentication and authorization requirements.

� Different research CI may rely on diverse identity
management systems and authentication models
(e.g., two-factor authentication). To ease the deploy-
ment of funcX agent on any resources, funcX needs
a general model that provides a uniform API, rather
than maintaining a set of APIs for the diverse iden-
tity providers.

� Users may have to use different accounts (e.g., insti-
tution accounts, national CI credentials, or national
laboratory accounts) to access different resources.
Users would like to use one account to authenticate
funcX endpoints infrequently.

� One frequent use case in scientific computing is that
resources are shared among a group of scientists.
Ideally, the authorization model should enable users
to grant access to others while enforcing secure
delegation.

funcX uses Globus Auth [75] for identity and access
management (IAM), and protection of all APIs. We use
Globus Auth as it satisfies the above requirements, is widely
adopted in scientific community, implements standard pro-
tocols (e.g., OAuth 2), enables simple delegation (e.g., such
that a user may allow the funcX service or another user to
access their endpoint), and offers a flexible OAuth client
model for developing the funcX SDK. Although Globus
Auth is used as the primary implementation, other IAM
services that provide similar capabilities and interfaces
could be integrated with funcX.

The funcX service is registered as a Globus Auth resource
server, allowing users to authenticate using a supported iden-
tity (e.g., institution, Google, ORCID) and enabling various
OAuth-based authentication flows (e.g., native client) for dif-
ferent scenarios. funcX has associated Globus Auth scopes
(e.g., “urn:globus:auth:scope:funcx:register_function”) via
which other clients (e.g., applications and services) may
obtain authorizations for programmatic access. funcX end-
points are themselvesGlobusAuth native clients, each depen-
dent on the funcX scopes, which are used to securely connect
to the funcX service. Endpoints require the administrator to
authenticate prior to registration in order to acquire access
tokens used for constructing API requests. The connection
between the funcX service and endpoints is established using

ZeroMQ. Communication addresses are sent as part of the
registration process. Inbound traffic from endpoints to the
cloud-hosted service is limited to known IP addresses.

Isolation. funcX function execution can be isolated in con-
tainers to ensure that functions cannot access data or devi-
ces outside their context. To enable fine-grained tracking of
execution, we store execution request histories in the funcX
service and in logs on funcX endpoints.

5 DATA MANAGEMENT

Data management is essential for many applications: func-
tions may interact with large and/or remote datasets, and
tasks may use the outputs of other tasks as inputs. This sec-
tion describes how data can be staged andmanaged between
different funcX endpoints (inter-endpoint) and between dif-
ferent functions within an endpoint (intra-endpoint).

5.1 Inter-Endpoint Data Transfers

To minimize operational costs and performance overheads
we limit the size of data that can be passed through the funcX
service to 10 MB. To enable functions to be seamlessly
invoked with large data that may be located on remote com-
puters, we require an out-of-band data transfer mechanism.
We summarize the primary requirements as follows.

� Transfers can be managed programmatically by
funcX.

� The transfer mechanism should be natively supported
and approved by the administrations of researchCI.

� Transfers should be optimized and provide high per-
formance, endpoint-to-endpoint movement.

� The transfer mechanism should be interoperable with
funcX’s authentication and authorization model (i.e.,
Globus Auth) to secure data transfers on behalf of
users.

� The transfer mechanism should allow a user’s func-
tions to fetch data that is shared among a group.

Listing 2. Inter-Endpoint Data Transfer With Globus

We focus on wide area data management, rather than
cloud storage, as datamay be stored or generated in different
locations (e.g., instruments, campus clusters, supercom-
puters) in many scientific use cases. Based on the require-
ments above, we integrate Globus transfer [31] to streamline
inter-endpoint data transfers. Globus has several advantages
that lead us to this choice: i) it is a research data management
service that provides high-performance data transfers
between arbitrary storage resources, such as supercom-
puters, laptops, and clouds; ii) it is widely deployed on
research CI and used in scientific research; iii) data are trans-
ferred directly between the source and destination systems
via the GridFTP [24] protocol; iv) it provides a Python SDK
that allows a user’s functions to fetch shared data.
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To use Globus, the Globus Connect software must be
installed on the storage system, this is often done by admin-
istrators installing Globus Connect Server on large clusters
or it can be done individually in user-space using Globus
Connect Personal. Storage systems are registered as a
Globus endpoint with associated authentication mechanism
in the Globus service. Each endpoint is given a unique end-
point identifier that is used when transferring data.

In this paper, we extend funcX to allow for references to
Globus-accessible files to be passed as input/output to/
from a function. Specifically, users must specify the Globus
endpoint and the path to the file on that endpoint. When
Globus-accessible files are passed to/from a funcX function,
funcX can automatically stage data either prior to, or after
invocation of the function. An example of using Globus for
inter-endpoint data transfer is shown in Listing 2.

We have found that Globus is well suited for our current
use cases; however, other mechanisms (e.g., HTTP, FTP, and
rsync) could also be used for inter-endpoint data transfers by
augmenting functions to make direct data downloads or
uploads. In future work we will extend the inter-endpoint
transfer model in funcX to transparently support these mech-
anisms aswe have done in Parsl.

5.2 Intra-Endpoint Data Transfers

Modern applications may involve frequent fine-grained
communications among functions executed on an individual
endpoint (i.e., intra-endpoint data transfers). For example,
distributed machine learning (ML) training may require that
state be coordinated among all worker nodes; and MapRe-
duce-style applications often involve a shuffle phase where
everymap task sends data to every reduce task.

Here we describe the advantages and disadvantages of
potential intra-endpoint data management approaches.

� A shared file system that can be accessed by every
worker on an endpoint. The effort to attach such
storage to a funcX endpoint is minimal, as many
clusters, clouds, and supercomputers provide built-
in shared file system (sharedFS) or object storage.
However, they often have high access cost, limited
IO performance, and high latency when writing and
reading many files.

� MPI is a message passing fabric that is highly scalable
and optimized for data communications on super-
computers with specialized interconnects; however,
MPI libraries are not natively available or optimized
for many computers (e.g., clouds and private clus-
ters). More importantly, the synchronous nature of
MPI’s collective communication is not well-suited for
the asynchronous task-based model in funcX, as it
blocks tasks from making progress even when partial
results are ready, which is important for many perfor-
mance-driven asynchronous applications (e.g., dis-
tributed machine learning training); HPC containers
oftenmust be adapted tomake use of local MPI librar-
ies; and a failure of one MPI process may cause other
MPI processes to block, which stops other tasks from
continuing.We note that fault tolerance has improved
in the recent release of MPI 4.0; however, this is not
commonly deployed at the time of writing.

� Socket and socket-like connections (e.g., ZeroMQ)
between workers can provide high throughput and
low latency direct data transfers. However, creating
pair-wise connections between workers is expensive
and in some cases workers (e.g., in containers) may
not be network addressable or may not have suffi-
cient open ports to support connections between all
workers.

� In-memory data stores (e.g., MemCache [61] and
Redis [21]) provide higher IOPS and lower latency
than shared file systems and support more data
types than socket connections (e.g., serialized data).
However, they require that storage be provisioned
explicitly, that additional services be hosted, and
they cannot match the raw throughput or latency of
direct socket connection [55].

The aforementioned advantages and disadvantages lead
us to select the shared file system and in-memory data store
(Redis) approaches to support intra-endpoint data transfers
in funcX, as these approaches are both general and are read-
ily available (or can be deployed with minimal effort) on
most target resources. We present a preliminary perfor-
mance study of these four approaches in Section 7.3 and the
results show that the performance of shared file system and
Redis is similar to the other approaches, especially when
transferring large volumes of data. We have extended the
funcX agent such that users may specify a requirement for a
Redis cluster to be deployed alongside their endpoint. The
funcX SDK provides a general interface to retrieve the Redis
client which users can interact with, as shown in Listing 3.

Listing 3. Intra-Endpoint Data Transfer With Redis

6 CONTAINER MANAGEMENT

funcX uses containers to provide customized execution
environments for functions irrespective of the endpoint’s
host environment. In this section, we discuss how the funcX
agent spawns containers to serve functions, retains warm
containers, routes functions to containers, and scales resour-
ces based on function requirements.

6.1 Container Warming

Commercial FaaS platforms [79] keep function containers
warm by leaving them running for a short period of time
(e.g., 5-15 minutes) following the execution of a function.
Warm containers remove the need to instantiate a new con-
tainer to execute a function, significantly reducing latency.

We argue that this need is especially important in HPC
environments for several reasons. First, containers and
Python environments (e.g., conda) are generally stored on
shared file systems of HPC systems. Therefore, starting
many containers and Python environments concurrently for
the workers at the HPC scale may impose significant stress
on the shared file systems. Second, many HPC centers
implement their own methods for instantiating containers
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that place limitations on the number of concurrent requests.
Third, individual cores are often slower in many-core archi-
tectures like Xeon Phis. As a result, the start time for con-
tainers can be much larger than what would be seen on a
PC, as shown in Table 3 in Section 7.4.

In funcX, container warming is implemented by the
funcX agent. To reduce the number of container cold starts,
the funcX agent keeps a container warm until there are
insufficient resources available to process pending work-
loads or the container has been idle for a configurable
period of time (e.g., 10 minutes). The funcX agent is extensi-
ble to support other container-warming strategies, such as
releasing the least recently used container and application-
agnostic container warming [68] if necessary.

6.2 Warming-Aware Function Routing

Ideally we aim to minimize the number of container cold
starts due to the cost of starting a container in HPC environ-
ments. To do so, the funcX agent needs to know which com-
puting nodes have warm containers and what types of
warm containers, so that it can route the function tasks to
the appropriate warm containers.

The funcX agent employs a hierarchical, warming-aware
scheduling algorithm to route function tasks to workers to
optimize throughput. The funcX agent determines which
functions to route to a given manager, and each manager
determines how to launch and spawn containers to satisfy
the arriving workload. Thus, warming-aware routing
involves coordination between managers and funcX agent.
Each manager advertises its deployed container types and
its available resources to the funcX agent. Based on the
advertised information of each manager, the funcX agent
implements a warming-aware scheduling algorithm to
route tasks to managers. Specifically, when receiving a task
with requirement for a specific container type, the scheduler
attempts to send the task to a manager that has a suitable
warm container. When there are multiple available manag-
ers with the required container type warm, priority is given
to the one with the most available container workers to bal-
ance load across managers. If there are not any warmed con-
tainers on any connected managers, the funcX agent
chooses one manager at random to execute the task. While
we use random scheduling in our implementation, other
scheduling policies, such as bin-packing and round-robin,
could also be used. To amortize network latency during
manager advertising and task dispatching, the funcX agent
also supports prefetching, which allows a manager to pre-
fetch a configurable number of additional tasks beyond its
current availability.

Upon receiving a set of tasks, the manager determines
the required container types and dynamically starts (and
stops) containers to serve tasks in a fair manner: we set the
number of deployed containers for a function type to be
proportional to the number of received tasks of this function
type. For instance, if 30% of the tasks a manager receives are
of type A and the manager can spawn at most 10 containers,
the manager will spawn 3 containers of type A.

It is worth mentioning that the function routing is differ-
ent when an endpoint is deployed on a Kubernetes cluster.
Both the manager and its workers are deployed within a
container pod that can only serve one type of function.

Hence, in this case, each manager is deployed with a spe-
cific container image and the agent simply needs to route
tasks to corresponding managers.

We apply relatively simple scheduling algorithms here to
demonstrate the benefits of warming aware routing; how-
ever, the funcX agent implements modular scheduling
interfaces for function routing (at funcX agents) and con-
tainer deployment (by managers) which enabling different
algorithms (e.g., priority-aware or deadline-driven schedul-
ing) to be implemented by users. We note that when task
duration is much larger than the container cold start time,
the benefits of warming-aware routing are limited.

6.3 Elastic Resource Provisioning

One of the main benefits of the FaaS computing model is
elasticity. To provide elasticity on a funcX endpoint, a
funcX agent dynamically provisions resources via an exten-
sible provisioning strategy interface.

The strategy interface consists of a monitoring and a scal-
ing component within the funcX agent. The monitoring
component interacts periodically (e.g., every second) with
the provider interface (introduced in Section 4.4) and the
funcX agent to fetch the current endpoint load, including
the active and idle resources (i.e., the number of container
workers) and the number of pending function requests.
Based on the monitoring information, the scaling compo-
nent automatically provisions more resources when the
number of function requests is greater than the number of
idle resources, and releases resources that have been idle
for some period of time, via the provider interface. The max-
imum idle time is set to two minutes by default, but is user-
configurable for each endpoint.

Similar to commercial FaaS platforms such as AWS
Lambda and Azure Functions, the funcX strategy allows
users to configure the minimum and maximum resources to
be used, as well as how aggressively a funcX agent scales
those resources (e.g., request one more resource when there
are ten waiting requests). However, elasticity may be sub-
ject to resource request delays, such as the time to request a
new instance on a cloud or to provision a resource via an
HPC scheduler.

7 EVALUATION

We evaluate the performance of funcX in terms of latency,
scalability, and throughput. We also study the effects of
batching, function routing, and data transfer approaches.

7.1 Latency

We explore funcX latency by instrumenting the system.
Fig. 3 shows latencies for a warm container as follows: ts:
Web service latency to authenticate, store the task in Redis,
and append the task to an endpoint’s queue; tf : forwarder
latency to read task from the Redis store, forward the task
to an endpoint, and write the result to the Redis store; te:
endpoint latency to receive tasks and send results to the for-
warder, and to send tasks and receive results from the
worker; and tw: function execution time. The endpoint was
deployed on ANL’s Cooley cluster for this test and had an
18 ms latency on average to the forwarder. We observe that
tw is fast relative to the overall system latency. The network
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latency between service and forwarder includes minimal
communication time due to internal AWS networks (mea-
sured at < 1 ms). Most funcX overhead is found in ts due to
authentication, and in te due to internal queuing and dis-
patching. We note here that the aim of funcX is not to build
yet another low-latency FaaS platform, but instead to pro-
vide a new federated model in which functions can be exe-
cuted on arbitrary remote machines. Nevertheless, in our
previous work we showed that the latency of funcX is com-
parable to commercial FaaS platforms, such as AWS
Lambda, Google Cloud Functions, andAzure Functions [32].

7.2 Scalability and Throughput

We study the strong and weak scaling of the funcX agent on
ANL’s Theta and NERSC’s Cori supercomputers. Theta is a
11.69-petaflop system based on the second-generation Intel
Xeon Phi “Knights Landing” (KNL) processor. Its 4,392
nodes each have a 64-core processor with 16 GB MCDRAM,
192 GB of DDR4 RAM, and are interconnected with high
speed InfiniBand. Cori is a 30-petaflop system with an Intel
Xeon “Haswell” partition and an Intel Xeon Phi KNL parti-
tion. We ran our tests on the KNL partition, which has 9688
nodes, each with a 68-core processor (with 272 hardware
threads) with six 16-GB DIMMs, 96 GB DDR4 RAM, inter-
connected in a Dragonfly topology. We perform experi-
ments using 64 Singularity containers on each Theta node
and 256 Shifter containers on each Cori node. Due to a lim-
ited allocation on Cori we use the four hardware threads
per core to deploy more containers than cores.

Strong scaling evaluates performance when the total
number of function invocations is fixed; weak scaling evalu-
ates performance when the average number of functions
executed on each container is fixed. To measure scalability
we created functions of various durations: a 0-second “no-
op” function that exits immediately, a 1-second “sleep”
function, and a 1-minute CPU “stress” function that keeps a
CPU core at 100% utilization. For each case, we measured
completion time of a batch of functions as we increased the
total number of containers. Notice that the completion time
of running M “no-op” functions on N workers indicates
the overhead of funcX to distribute the M functions to N
containers. Due to limited allocations we did not execute

sleep or stress functions on Cori, nor did we execute stress
functions for strong scaling on Theta. We pre-warmed all
containers in these experiments.

7.2.1 Strong Scaling

Fig. 4a shows the completion time of 100,000 concurrent
function requests with an increasing number of containers.
On both Theta and Cori, the completion time decreases as
the number of containers increases, until we reach 256 con-
tainers for “no-op” and 2048 containers for “sleep” on
Theta. As reported by Wang et al. [79] and Microsoft [19],
Amazon Lambda achieves good scalability for a single func-
tion to more than 200 containers, Microsoft Azure Functions
can scale up to 200 containers, and Google Cloud Functions
does not scale well beyond 100 containers. While these
results do not indicate the maximum number of containers
that can be used for a single function, and likely include
per-user limits imposed by the platform, our results show
that funcX scales similarly to commercial platforms.

7.2.2 Weak Scaling

We performed concurrent function requests such that each
container receives, on average, 10 requests. Fig. 4b shows
weak scaling for “no-op,” “sleep,” and “stress.” For “no-op,”
the completion time increases with more containers on both
Theta and Cori. This reflects the time required to distribute
requests to all of the containers. On Cori, funcX scales to
131072 concurrent containers and executes more than 1.3
million “no-op” functions. Again, we see that the completion
time for “sleep” remains close to constant up to 2,048 con-
tainers, and the completion time for “stress” remains close to
constant up to 16,384 containers. Thus, we expect a function
with a several-minute duration would scale well to many
more containers.

7.2.3 Throughput

We observe a maximum throughput for a funcX agent
(computed as number of function requests divided by com-
pletion time) of 1,694 and 1,466 requests per second on
Theta and Cori, respectively.

7.2.4 Summary

Our results show that funcX agents i) scale to 130,000+ con-
tainers for a single function; ii) exhibit good scaling perfor-
mance up to approximately 2,048 containers for a 1-second
function and 16,384 containers for a 1-minute function; and

Fig. 3. f uncX latency breakdown for a container.

Fig. 4. Strong and weak scaling of the funcX agent.
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iii) provide similar scalability and throughput using both
Singularity and Shifter containers on Theta and Cori. It is
important to note that these experiments study the funcX
agent, and not the end-to-end throughput of funcX. While
the funcX web service can elastically scale to meet demand,
communication overhead may limit throughput. To address
this challenge and amortize communication overheads, we
enable batch submission of tasks. These optimizations are
discussed in Section 7.5.

7.3 Data Management

We evaluate four potential approaches for intra-endpoint
data transfers (described in Section 5.2) on Theta. We use
mpi4py for MPI, ZeroMQ for direct socket connections,
Redis for the in-memory store, and Theta’s Lustre shared
file system. We note that we use mpi4py because it sup-
ports direct Python object transfers and previous work [65]
has shown that mpi4py does not add significant overhead
when compared with OpenMPI in terms of throughput and
latency for data transfers. We emulate different communi-
cation patterns (i.e., point-to-point, broadcast, and all-to-all)
and vary data transfer size. Fig. 5 shows the performance of
these four approaches with different communication pat-
terns. As expected, MPI performs the best, and sharedFS the
worst. However, ZeroMQ and Redis achieve similar perfor-
mance to MPI. As data volume increases, the performance
difference between the four approaches diminishes, as trans-
fer time is mainly determined by available network band-
width (which is the same for all approaches).

While sharedFS and Redis perform slightly worse than
MPI for small data sizes, we adopt them in funcX because
of their generality, ease-of-use, and the challenges of using
mpi4py (as well as MPI compiled in C) and ZeroMQ
described in Section 5.2.

We now evaluate intra-endpoint data management in the
context of MapReduce applications and a real-world science
application deployed on funcX.

7.3.1 MapReduce

To demonstrate how Redis and sharedFS can facilitate intra-
endpoint data transfers for real applications, we deployed a
funcX endpoint with a three-node Redis cluster. We also
used the shared Lustre file system on Theta. We deployed
two MapReduce applications: WordCount and Sort. These
applications involve an all-to-all communication pattern
between map and reduce tasks (i.e., data shuffling).

Each application processes 30 GB of Wikipedia text data,
and has 300map and 300 reduce tasks, requiring communica-
tion of 90,000 data chunks in total. Table 1 shows the average
completion time of each task spent in each phase of the Map-
Reduce application: input read, map process, intermediate
write, intermediate read, reduce process, output write, when
using Redis and sharedFS approaches for data shuffling.
WordCount benefits less from Redis than Sort as WordCount
shuffles just one tenth of the data. The table shows that Redis
can speed up the data shuffling phase of the workload (i.e.,
intermediatewrite and read) by up to 3x.

Note that Table 1 shows the average task completion
time. The benefits of Redis over sharedFS on the total com-
pletion time of a MapReduce application may depend on
the amount of parallelism and the portion of the shuffle
phase over the other phases. For example, the total comple-
tion time of Sort with Redis and sharedFS are 220 and 520
seconds, respectively, yielding a 55.7% improvement. The
WordCount application runs in 1,800 seconds and 2,200 sec-
onds, respectively, yielding a 18.2% improvement. This is
because Sort has a heavier shuffle phase than WordCount.

7.3.2 Colmena

Finally, we evaluate intra-endpoint data management in the
context of a real-world scientific application to demonstrate
the benefits of Redis over sharedFS. Colmena [80] is a
framework that manages large-scale, AI-directed steering of
computational campaigns (e.g., to efficiently explore large
molecular spaces when designing new materials). A Col-
mena application consists of a Thinker that implements the
decision-making policy to generate new tasks (e.g., new
simulation, new model training, or model inference), a Task
Server that dispatches task requests to resources and man-
ages task results, andWorkers that are deployed on compute
resources to execute tasks. These components exchange data
(e.g., task requests and results) with Redis used to facilitate
transfers. We implement a Colmena benchmark with 1,000

Fig. 5. Performance of the four intra-endpoint transfer approaches. Top:
point-to-point; middle: broadcast to 20 nodes; bottom: all-to-all on 20
nodes.

TABLE 1
Average Completion Time of the Transfer Phases in WordCount

and Sort When Using Redis and Shared File System
for Intra-Endpoint Data Management

WordCount (s) Sort (s)

Redis SharedFS Redis SharedFS

Intermediate write 3.55 8.15 3.27 5.32
Intermediate read 33.39 43.40 11.37 41.77
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tasks, each with 1 MB input and 1 MB output data. Table 2
shows the average completion time of the communication
stages in Colmena. Redis yields a lower completion time for
all communication stages compared to sharedFS. Such a
benefit has been demonstrated to be particularly important
when running Colmena at scale with thousands of tasks.

7.4 Function Routing

Before exploring function routing performance, we first
quantify the instantiation cost of various container technolo-
gies on different resources. Specifically, wemeasure the time
taken to start a container and execute a Python command to
import funcX’s worker module—a requirement prior to exe-
cuting a funcX function. We deploy the containers on an
AWS EC2 m5.large instance and on compute nodes on
Theta and Cori following the facility’s documented best
practices. Table 3 shows the results. We speculate that the
significant performance deterioration of container instantia-
tion on HPC systems can be attributed to a combination of
slower clock speed on KNL nodes and shared file system
contentionwhen fetching images. These results highlight the
need to apply function warming approaches to reduce over-
heads onHPC systems.

We evaluate funcX’s function routing strategy and show
that it improves overall throughput as well as reducing the
number of container cold starts. We deployed an endpoint
on Theta and compared the performance of warming-aware
routing and randomized (non-warming-aware) routing. The
endpoint is allocated 10 nodes and each node can host 10
workers, each with its own container. We registered 10

functions, where each function requires a specific container
(i.e., 10 different containers.) We submitted a batch of
requests, each of which is chosen from one of the ten func-
tions uniformly at random. Figs. 6 and 7 show the overall
function completion time and the number of container cold
starts for different batch sizes and for different function
durations (0, 1, 5, and 20 seconds). We note that the number
of requests in a batch is much higher than the available
resources (100 container workers) in this experiment, and
thus a container worker is more likely to be killed to serve
other request when using non-warming-aware routing.
Thus, the warming-aware routing reduces completion time
by up to 61% for a batch of requests (i.e., higher throughput)
and reduces the number of container cold starts significantly
(e.g., 22 cold starts for 3,000 functions), compared to the ran-
domized routing strategy. This is because the warming-
aware algorithm attempts to reuse the warm containers as
much as possible to reduce the overhead of container instan-
tiation. As expected, the benefit of warming-aware routing
gradually diminishes as the function duration increases,
because the function runtime, rather than the cold con-
tainer instantiation time, becomes dominant.

7.5 Batching

To evaluate the effect of executor-side batching, we submit
10,000 concurrent “no-op” function requests and measure
the completion time when executors can request one func-
tion at a time (batching disabled) vs when they can request
many functions at a time based on the number of idle con-
tainers (batching enabled). We use 4 nodes (64 containers

TABLE 2
Average Completion Time of the Transfer Phases in the
Colmena Benchmark When Using Redis and Shared
File System for Intra-Endpoint Data Management

Stage Redis (ms) SharedFS (ms)

Input data write from Thinker 7.15 32.31
Input read on Workers 0.70 11.36
Result write fromWorkers 18.04 244.72
Result read from Task Server 0.11 3.50

TABLE 3
Cold Container Instantiation Time for Different Container

Technologies on Different Resources

System Container Min (s) Max (s) Mean (s)

Theta Singularity 9.83 14.06 10.40
Cori Shifter 7.25 31.26 8.49
EC2 Docker 1.74 1.88 1.79
EC2 Singularity 1.19 1.26 1.22

Fig. 6. Completion time of warming-aware and non-warming-aware routing.

Fig. 7. Number of container cold starts of warming-aware and non-warming-aware routing.
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each) on Theta. We observe that the completion time with
batching enabled is 6.7 s (compared to 118 s when disabled).

8 EXPERIENCES WITH fUNCX

As of August, 2022 funcX has been used by 413 users to per-
form over 19.8 million function invocations, 338105 func-
tions have been registered, and 4,027 endpoints have been
created. Here we describe our experiences applying funcX
to various scientific case studies.

AI-Enabled Steering of Computational Campaigns. Col-
mena [80] is an open-source library that enables researchers
to build complex, AI-directed HPC campaigns. Researchers
can implement flexible decision-making policies to steer
different tasks (e.g., simulation, model update, and model
inferences) of computational campaigns. When tasks are
generated, funcX serves as an execution backend to distrib-
ute and execute tasks. The FaaS model of funcX and the
implementation of container management allows Colmena
to flexibly dispatch tasks to arbitrary computing resources,
enabling ML-enhanced tasks to be sent to GPU-accelerated
devices and high throughput simulations to HPC clusters.
The integration of data management mechanisms (e.g.,
Globus and Redis) in funcX enables data to move between
Colmena entities transparently without requiring the user
to manage movement; further, it can improve performance
and simplify distributed, data-intensive campaigns.

Linking Instruments and HPC. funcX has been used to
combine several experimental instruments with HPC infra-
structure [78]. This approach allows scientists to offload
computationally-intensive analysis tasks to HPC resources,
simplifies large-scale parallel processing for large data rates,
and enables online analysis. Such experimental techniques,
including serial synchrotron crystallography [70], X-ray
photon correlation spectroscopy [62], ptychography [30],
and scientific machine learning [57], depend on orchestra-
tion of various activities in various locations. For this pur-
pose, these examples use Globus flows [33] to create
complex sequences of actions. For example, when data are
acquired from an experiment, run quality control at the
edge, move data to an HPC center, run analysis and recon-
struction algorithms, and index resulting images in a data
catalog. funcX provides the compute substrate enabling
many of these actions to be executed in various locations.
Integration of Globus for data management simplifies dis-
patching tasks to different resources without requiring
changes to broader workflows to transfer and retrieve
inputs and results. Further, scientific analysis toolkits are
often containerized to promote portability and exploit avail-
able resources. The container warming features presented
in this paper enable these workloads to reduce cold starts,
which can be costly on large, shared file systems and facili-
tate rapid computation—a necessary feature to support
real-time computation and experiment steering. We report
function execution and data transfer characteristics in prior
work [78].

AlphaFold as a Service. AlphaFold [47] is a cutting edge
machine learning model that can predict a protein’s 3D
structure from its amino acid sequence. AlphaFold has
garnered significant interest in the bioinformatics commu-
nity, with applications in the development of therapeutics

and accelerating the practice of deriving crystal structures
at light sources. However, AlphaFold relies on powerful
GPUs and large reference datasets, restricting access
for many researchers. To address these challenges, the
Argonne Leadership Computing Facility deployed Alpha-
Fold as a service using funcX to dynamically provision
GPU resources on-demand. In this work, containers are
dispatched to GPU nodes and managed by the funcX
endpoint to serve inference requests. As AlphaFold tasks
can take over an hour to process, the Globus integration
with funcX provides the ability to asynchronously trans-
fer results to users.

Distributed ML. Flox [51] is a federated learning (FL)
framework that decouples model training and inference
from infrastructure management. Flox uses funcX to enable
users to train and deploy FL models on one or more remote
computers, and in particular on edge devices. We are apply-
ing these techniques to Rural AI applications [25], using
funcX to facilitate training and deployment of models in
remote locations. Rural AI requires reliable task and result
transmission as devices are deployed in rural settings where
device and network outages are common, and the quality of
wireless networks varies depending on location. funcX’s
hierarchically designed queues support the necessary
robustness to dispatch (and queue) tasks across rural devi-
ces. Containers enable execution of tasks on heterogeneous
edge devices for training and on centralized cloud instances
for model aggregation.

9 RELATED WORK

Both commercial and open-source FaaS platforms have
proved extremely successful in industry as a way to reduce
costs and remove the need to manage infrastructure.

Hosted FaaS Platforms. Amazon Lambda [1], Google Cloud
Functions [11], and Azure Functions [8] are the most well-
known FaaS platforms. They support various function lan-
guages and trigger sources, connect directly to other cloud
services, and apply fine-grain billing models. Lambda uses
Firecracker [22], a custom virtualization technology built on
KVM, to create lightweight micro-virtual machines. To meet
the needs of IoT use cases, some cloud-hosted platforms sup-
port local deployment (e.g., AWS Greengrass [7]); however,
they support only singlemachines and require that functions
be exported from the cloud platform.

Open Source Platforms. Open FaaS platforms resolve two
of the key challenges to using FaaS for scientific workloads:
they can be deployed on-premise and can be customized to
meet the requirements of data-intensive workloads without
set pricing models.

Apache OpenWhisk [4], the basis of IBM Cloud Func-
tions [12], defines an event-based programming model, con-
sisting of Actions which are stateless, runnable functions,
Triggers which are the types of events OpenWhisk may
track, and Ruleswhich associate one trigger with one action.
OpenWhisk can be deployed locally as a service using a
Kubernetes cluster.

Fn [10] is an event-driven FaaS system that executes func-
tions in Docker containers. Fn allows users to logically group
functions into applications. Fn can be deployed locally (on
Windows,MacOS, or Linux) or on Kubernetes.
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The Kubeless [15] FaaS platform builds upon Kubernetes.
It uses Apache Kafka for messaging, provides a CLI that mir-
rors Amazon Lambda, and supports comprehensive moni-
toring. Like Fn, Kubeless allows users to define function
groups that share resources.

SAND [23], which has been recently open-sourced as
KNIX MicroFunctions [14], is a lightweight, low-latency
FaaS platform from Nokia Bell Labs that provides applica-
tion-level sandboxing and a light-weight process-based exe-
cution model. KNIX provides support for function chaining
via user-submitted workflows. Recently, KNIX has been
further extended to support GPU sharing among func-
tions [64]. However, KNIX requires privileged access to
nodes, which is generally not possible in research CI.

Abaco [74] implements the Actor model, where an actor is
an Abaco runtime mapped to a specific Docker image. Each
actor executes in response to messages posted to its inbox. It
supports functions written in several programming lan-
guages and automatic scaling. Abaco also provides fine-
grained monitoring of container, state, and execution events
and statistics. Abaco is deployable via Docker Compose.

ChainFaaS [42] is a blockchain-based FaaS platform that
makes use of idle personal computers. The platform allows
users to submit functions that utilize contributed computing
power, or to be a provider who contributes the idle comput-
ing resources for potential profits. While ChainFaaS shares
some similar goals with funcX, it focuses on deployment on
personal computers, rather than large-scale research CI.

DFaaS [34] is a federated and decentralized FaaS plat-
form for edge computing. It relies on a peer-to-peer network
to share the states of edge nodes to balance loads among all
the nodes.

Comparison With funcX. Hosted cloud providers imple-
ment high performance and reliable FaaS models that are
used by an enormous number of users. However, they often
have vendor lock-in, are not designed to support heteroge-
neous resources or research CI (e.g., schedulers, containers),
do not integrate with the science ecosystem (e.g., in terms of
data and authentication models), and can be costly.

Open source and academic frameworks support on-prem-
ise deployments and can be configured to address a range of
use cases. However, most systems we surveyed are Docker-
based and rely on Kubernetes (or other container orchestra-
tion platforms) for deployment. Some systems such as
ChainFaaS and DFaaS support distributed function execu-
tion on personal computers and edge nodes. However, to the
best of our knowledge, there are no systems that support
remote execution over a federated ecosystem of endpoints
on diverse research CI (from edge to HPC environments).

Other Related Approaches. FaaS has many predecessors,
notably grid and cloud computing, container orchestration,
and analysis systems. Grid computing [39] laid the founda-
tion for remote, federated computations, often through fed-
erated batch submission [52]. GridRPC [66] defines an API
for executing functions on remote servers requiring that
developers implement the client and the server code. funcX
extends these ideas to allow interpreted functions to be reg-
istered and then executed within sandboxed containers via
standard cloud and endpoint APIs.

Container orchestration systems, such as Mesos [44],
Kubernetes [43], KubeFed [16], MicroK8s [18], and K3s [13],

allow users to scale deployment of containers while manag-
ing scheduling, fault tolerance, resource provisioning, and
addressing other user requirements. Mesos and Kubernetes
primarily rely on dedicated, cloud-native infrastructure.
KubeFed extends Kubernetes to support multi-cluster
deployments. MicroK8s and K3s are lightweight versions of
Kubernetes and are designed for Edge and IoT use cases.
These systems cannot be directly used with diverse research
CI (e.g., HPC resources); however, these container orches-
tration systems serve as a basis for developing serverless
platforms, such as Kubeless, and indeed play an increas-
ingly important role in research CI. funcX focuses at the
level of scheduling and managing functions, that are
deployed across a pool of containers. We leverage both con-
tainer orchestration systems (e.g., Kubernetes) as well as
techniques from orchestration systems (e.g., warming) in
funcX.

Data-parallel systems such as Hadoop [2] and Spark [6]
enable map-reduce style analyses. Unlike funcX, these sys-
tems dictate a particular programming model on dedicated
clusters. Python parallel computing libraries such as Parsl
and Dask [9] support development of parallel programs,
and parallel execution of selected functions within those
scripts, on clusters and clouds. These systems could be
extended to use funcX for remote execution of tasks.

LFM [67] provides advanced dependency management
for Python functions by using transparent dependency detec-
tion and distribution, and dynamic provisioning and
resourcemanagement at the granularity of a Python function.
Azure Functions [68] proposed a policy that dynamically
controls the pre-warming window for application containers
to reduce the number of container cold starts, based on the
characterization of applications. Researchers have proposed
various methods to mitigate container cold start latency by
leveraging various workflow-specific information, such as
cascading starts and dependency graphs [29], [35], [69].
Anna [73] is an autoscaling key-value store that can be used
to support stateful serverless computing. Delta [53] adds a
shim layer on top of funcX that profiles the function perfor-
mance on different endpoints and automatically schedules
functions to appropriate endpoints. Several recent papers
have aimed to model application performance and optimize
performance on FaaS platforms [28], [45], [50], [56]. While
funcX implements its own function routing, container man-
agement, data management schemes, and performance met-
rics, these systems are orthogonal to this paper and could be
integratedwith funcX.

Several frameworks have been implemented on top of
funcX to create workflows for different scientific use cases.
For instance, Xtract [71] uses funcX to enable workflow
compositions for distributed bulk metadata extraction.
Globus Automate [78] uses funcX to run arbitrary computa-
tions as part of automated and event-based workflows, it
uses funcX’s APIs to automatically monitor the status of a
funcX function and trigger the next step when it completes.

10 CONCLUSION

funcX is a distributed FaaS platform that is designed to sup-
port the unique needs of research computing. Unlike existing
centralized FaaS platforms, funcX combines a reliable and
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easy-to-use cloud-hosted interface with the ability to securely
execute functions on user-deployed funcX endpoints
deployed on various remote computing resources. funcX sup-
ports many HPC systems and cloud platforms, can use three
container technologies, and can expose access to heteroge-
neous and specialized computing resources. In this paper we
extend funcX to support inter-endpoint and intra-endpoint
data transfers between functions, and optimize function exe-
cution performance with advanced container management
and warming-aware function routing mechanisms. We
showed that funcX agents can scale to execute 1 M tasks over
130,000 concurrent workers when deployed on the Cori
supercomputer. We also showed that funcX’s data transfer
mechanisms are comparable to alternative methods, and that
they can significantly improve application performance.
Finally, we showed that funcX can dynamically route func-
tions to workers to reduce container warming overhead and
that batching can significantly reduce overheads.

funcX demonstrates the advantages of adapting the FaaS
model to create a federated computing ecosystem. Based on
early experiences using funcX in scientific case studies [32],
we have found that the approach provides several advan-
tages, including abstraction, code simplification, portability,
scalability, and sharing; however, we also identified several
limitations including suitability for some applications, con-
flict with current allocation models, and challenges decom-
posing applications into functions. We hope that funcX will
serve as a flexible platform for research computing while
also enabling new studies in function scheduling, dynamic
container management, and data management.

In future work, we will continue our work to explore new
scheduling approaches that can select appropriate endpoints
for function execution andmanage data dependencies between
functions. We also plan to provide APIs that allow users to
manage and discover functions and endpoints. Wewill extend
funcX’s containermanagement capabilities to create containers
dynamically based on function requirements, and to stage con-
tainers to endpoints on-demand. We will also explore techni-
ques for optimizing performance, for example by sharing
containers among functions with similar dependencies and
developing resource-aware scheduling algorithms.
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